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Abstract

A full-field dynamic solution of an interfacial line force or dislocation in bonded anisotropic elastic half-spaces is

presented. The form of the solution resembles that of the corresponding static solution. The evaluation of the solution

requires only the calculation of certain eigenvalue problems. Particular attention is given to the singular feature in the

response associated with the interfacial Stoneley wave. Numerical examples are given to illustrate the characteristics of a

pair of bonded misoriented half-spaces of GaAs.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A prominent feature of the dynamics of the interface separating two dissimilar elastic media is the

possible existence of interfacial waves, commonly referred to as Stoneley waves. Such waves propagate

without dispersion along the interface and attenuate exponentially with distance normal to the interface in
both media. The early investigation of interfacial waves was primarily for geophysical applications. More

recently interfacial waves have been applied to non-destructive materials characterization.

Stoneley (1924) was the first to demonstrate that steady interfacial waves do not always exist for bonded

isotropic half-spaces. Scholte (1947) showed that for bonded isotropic half-spaces the interfacial waves only

exist under very severe restrictions on material constants. Barnett and Lothe (1974) and Chadwick and

Currie (1974) deduced a general condition determining the Stoneley wave velocity in bonded anisotropic

half-spaces. Barnett et al. (1985) further established the uniqueness and existence conditions of subsonic

Stoneley waves in bonded anisotropic half-spaces. Every and Briggs (1998) presented algorithms based on
integral transforms for calculating the time domain displacement response of bonded anisotropic half-

spaces to impulsive line and point forces at their interface. The calculation of the line force response at the

interface was reduced to a purely algebraic problem.
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In this paper the transient motion of an anisotropic bimaterial due to a line force and a line dislocation at

the interface is considered. A formulation for two-dimensional self-similar problems in elastodynamics

developed by Wu (2000) is employed. In this formulation the solution is expressed in terms of the eigen-

values and eigenvectors of a six-dimensional matrix, which is a function of the material constants, time and
position. A major advantage of the proposed formulation is that no integral transforms are required. This

fact greatly facilitates derivations of explicit solutions. Indeed, a full-field solution of the problem under

consideration is derived. Particular attention is given to the singular feature in the response associated with

the interfacial Stoneley wave. Numerical examples are presented to illustrate the characteristics of a pair of

bonded misoriented half-spaces of GaAs.

2. Formulation

For two-dimensional deformation in which the Cartesian components of the stress rij and the dis-

placement ui, i; j ¼ 1; 2; 3, are independent of x3, the equations of motion are

ðt1;1 þ t2;2Þ ¼ q€uu; ð1Þ
where t1 ¼ ðr11; r21; r31ÞT, t2 ¼ ðr12; r22; r32ÞT, €uu is the acceleration, q is the density, a subscript comma
denotes partial differentiation with respect to coordinates and an overhead dot designates derivative with

respect to time t. The stress–strain laws are

t1 ¼ Qu;1 þ Ru;2; ð2Þ

t2 ¼ RTu;1 þ Tu;2; ð3Þ

where the matrices Q, R, and T are related to the elastic constants Cijks by

Qik ¼ Ci1k1; Rik ¼ Ci1k2; Tik ¼ Ci2k2:

The equations of motion expressed in terms of the displacements are obtained by substituting Eqs. (2) and

(3) into Eq. (1) as

Qu;11 þ ðRþ RTÞu;12 þ Tu;22 ¼ q€uu: ð4Þ

Let the displacement be assumed as uðx1; x2; tÞ ¼ uðxÞ with the variable xðx1; x2; tÞ implicitly defined by

xt ¼ x1 þ pðxÞx2: ð5Þ
Eq. (4) becomes (Wu, 2000)

o

ox
ox
ox1

½Q
�

� qx2Iþ pðxÞðRþ RTÞ þ pðxÞ2T�u0ðxÞ
�

¼ 0; ð6Þ

where I is the identity matrix and ox=ox1 ¼ 1=ðt � p0ðxÞx2Þ. Let u0ðxÞ be expressed as

u0ðxÞ ¼ f ðxÞaðxÞ; ð7Þ

where f ðxÞ is an arbitrary scalar function of x. It follows that uðxÞ is a solution of Eq. (4) if

Dðp;xÞaðxÞ ¼ 0; ð8Þ

where Dðp;xÞ is given by

Dðp;xÞ ¼ Qþ pðRþ RTÞ þ p2T� qx2I: ð9Þ
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For non-trivial solutions of aðxÞ we must have

jDðp;xÞj ¼ 0; ð10Þ
where jDj is the determinant of D.

Eq. (10) provides six eigenvalues of p as a function of x, denoted by pkðxÞ, k ¼ 1; 2; . . . ; 6. The function
pkðxÞ is single-valued if x is allowed to range over the six sheets Rk of its Riemann surface, taking the values

pkðxÞ on Rk (Willis, 1973). If x is real and jxj is sufficiently large, there are six real roots pkðxÞ. Three of these
roots are characterized by p0ðxÞ > 0 and the other three by p0ðxÞ < 0. The three of the former type will be

assigned to the Riemann surfaces Rk ðk ¼ 1; 2; 3Þ and the three of the latter type to Rk ðk ¼ 4; 5; 6Þ. The sheets
are connected across appropriate lines joining the branch points of pkðxÞ, which are located on the real axis
in the complex x-plane and are determined by x0ðpÞ ¼ 0. For a real value of x, x ¼ y1 þ pðxÞy2 represents a
plane wave front which is tangent to a wavefront surface at ðx � pðxÞ=p0ðxÞ; 1= p0ðxÞÞ (Wu, 2000). Thus real

pk ðk ¼ 1; 2; 3Þ are associated with the rays propagating in the direction of positive x2 while pk ðk ¼ 4; 5; 6Þ
with the rays propagating in the negative direction of x2. It can be shown that complex pkðxÞ has positive
imaginary part in the upper half of Rk ðk ¼ 1; 2; 3Þ and negative imaginary part in the upper plane of Rk

ðk ¼ 4; 5; 6Þ. The variable xk ¼ xkðx1; x2; tÞ can then be solved from Eq. (5) by taking pðxÞ ¼ pkðxÞ.
From Eq. (5) the complex variables xk may be written as

xk ¼ y1 þ pkðxkÞy2; ð11Þ
where ya ¼ xa=t, a ¼ 1; 2. Substitution of Eq. (11) into Eq. (9) leads to

D ¼ bQQ þ pðbRR þ bRRTÞ þ p2bTT; ð12Þ
wherebQQik ¼ bCCi1k1; bRRik ¼ bCCi1k2; bTTik ¼ bCCi2k2;

and bCCijks ¼ Cijks � qyjysdik. Thus pk as a function of y1 and y2 can be obtained from Eq. (10) with D given by

Eq. (12). Once pkðy1; y2Þ are obtained, xkðy1; y2Þ are simply given by Eq. (11). Note that as t ! 1, the

eigenvalues pk reduce to Stroh�s eigenvalues for anisotropic elastostatics (Stroh, 1958).

From Eq. (7), the general solution of Eq. (4) may be represented as

uðx1; x2; tÞ;1 ¼ 2Re
X
k

oxk

ox1
fkðxkÞakðxkÞ

( )
; ð13Þ

uðx1; x2; tÞ;2 ¼ 2Re
X
k

oxk

ox2
fkðxkÞakðxkÞ

( )
; ð14Þ

_uuðx1; x2; tÞ ¼ 2Re
X
k

oxk

ot
fkðxkÞakðxkÞ

( )
; ð15Þ

where k ¼ 1; 2; 3 or 4; 5; 6, and

oxk

ox1
¼ 1

t � p0kðxkÞ
;

oxk

ox2
¼ pkðxkÞ

oxk

ox1
;

oxk

ot
¼ �xk

oxk

ox1
:

The choice of the range of k depends on whether up-going rays or down-going rays are considered.

K.-C. Wu / International Journal of Solids and Structures 40 (2003) 1811–1823 1813



By substituting Eqs. (13) and (14) into Eqs. (2) and (3), the general solutions of the stress vectors t1 and t2
can be expressed as

t1ðx1; x2; tÞ ¼ �2Re
X
k

fkðxkÞ qxk
oxk

ot
akðxkÞ

�(
þ oxk

ox2
bkðxkÞ

�)
; ð16Þ

t2ðx1; x2; tÞ ¼ 2Re
X
k

oxk

ox1
fkðxkÞbkðxkÞ

( )
; ð17Þ

where

bkðxÞ ¼ ðRT þ pkðxÞTÞakðxÞ: ð18Þ

A useful expression for p0kðxkÞ is given by (Wu, 2000)

p0kðxÞ ¼ qx
akðxÞTakðxÞ
akðxÞTbkðxÞ

:

3. Full-field solution

Consider a bimaterial consisting of two dissimilar elastic half-spaces bonded together. Let the half-space

x2 P 0 be occupied by material 1 and the half-space x2 6 0 be occupied by material 2. The bimaterial is

initially stress-free and is subjected to a line force HðtÞF and a dislocation of Burgers vector HðtÞb at the
origin for t > 0. Here H is the Heaviside step function. The associated jump conditions at the interface

x2 ¼ 0 are given by

u;1ðx1; 0þ; tÞ � u�;1ðx1; 0�; tÞ ¼ �dðx1ÞHðtÞb; ð19Þ

t2ðx1; 0þ; tÞ � t�2ðx1; 0�; tÞ ¼ �dðx1ÞHðtÞF; ð20Þ

where the superscript ‘‘�’’ denotes quantities referred to material 2.

Since up-going waves are generated in material 1 and down-going waves are in material 2, the expressions

for u;1 and t2 in materials 1 are given by

u;1 ¼ 2Re AðxÞ ox
ox1

	 

fðxÞ

� �
; ð21Þ

t2 ¼ 2Re BðxÞ ox
ox1

	 

fðxÞ

� �
; ð22Þ

where

AðxÞ ¼ ½a1ðx1Þ; a2ðx2Þ; a3ðx3Þ�;
BðxÞ ¼ ½b1ðx1Þ; b2ðx2Þ; b3ðx3Þ�;
ox
ox1

	 

¼ diag

ox1

ox1
;
ox2

ox1
;
ox3

ox1

� �
;

fðxÞ ¼ ½f1ðx1Þ; f2ðx2Þ; f3ðx3Þ�T;
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and ‘‘diag’’ denotes diagonal matrix. Those for material 2 are

u�;1 ¼ 2Re A�ðx�Þ ox�

ox1

	 

f�ðx�Þ

� �
; ð23Þ

t�2 ¼ 2Re B�ðx�Þ ox�

ox1

	 

f�ðx�Þ

� �
; ð24Þ

where

A�ðx�Þ ¼ ½a�4ðx�
4Þ; a�5ðx�

5Þ; a�6ðx�
6Þ�;

B�ðx�Þ ¼ ½b�4ðx�
4Þ; b�5ðx�

5Þ; b�6ðx�
6Þ�;

f�ðx�Þ ¼ ½f �
4 ðx�

4Þ; f �
5 ðx�

5Þ; f �
6 ðx�

6Þ�
T
;

ox�

ox1

	 

¼ diag

ox�
4

ox1
;
ox�

5

ox1
;
ox�

6

ox1

� �
:

The forms of fðxÞ and f�ðx�Þ are assumed as follows:

fðxÞ ¼ 1

2pi
1

x

	 

qðxÞ; ð25Þ

f�ðx�Þ ¼ 1

2pi
1

x�

	 

q�ðx�Þ; ð26Þ

where

1

x

	 

¼ diag

1

x1

;
1

x2

;
1

x3

� �
; qðxÞ ¼ ½q1ðx1Þ; q2ðx2Þ; q3ðx3Þ�T;

1

x�

	 

¼ diag

1

x�
4

;
1

x�
5

;
1

x�
6

� �
; q�ðxÞ ¼ ½q�4ðx�

4Þ; q�5ðx�
5Þ; q�6ðx�

6Þ�
T
;

qk and q�k are analytic at xk ¼ 0 and x�
kþ3 ¼ 0, k ¼ 1; 2; 3, respectively. With Eq. (25) substituted, Eqs. (21)

and (22) become

u;1 ¼
1

p
Im AðxÞ 1

x
ox
ox1

	 

qðxÞ

� �
; ð27Þ

t2 ¼
1

p
Im BðxÞ 1

x
ox
ox1

	 

qðxÞ

� �
: ð28Þ

With Eq. (26) substituted, Eqs. (23) and (24) become

u�;1 ¼
1

p
Im A�ðx�Þ 1

x�
ox�

ox1

	 

q�ðx�Þ

� �
; ð29Þ

t�2 ¼
1

p
Im B�ðx�Þ 1

x�
ox�

ox1

	 

q�ðx�Þ

� �
: ð30Þ
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As x2 ! 0þ, xk ¼ g ¼ y1 þ i0þ, k ¼ 1; 2; 3, Eqs. (27) and (28) yield

u;1 ¼
1

px1
Im½AðgÞqðgÞ� � dðy1Þ

t
Re½AðgÞqðgÞ�; ð31Þ

t2 ¼
1

px1
Im½BðgÞqðgÞ� � dðy1Þ

t
Re½BðgÞqðgÞ�: ð32Þ

Similarly as x2 ! 0�, x�
k ¼ g ¼ y1 þ i0þ, k ¼ 4; 5; 6, Eqs. (29) and (30) give

u�;1 ¼
1

px1
Im½A�ðgÞq�ðgÞ� � dðy1Þ

t
Re½A�ðgÞq�ðgÞ�; ð33Þ

t�2 ¼
1

px1
Im½B�ðgÞq�ðgÞ� � dðy1Þ

t
Re½B�ðgÞq�ðgÞ�: ð34Þ

In Eqs. (31)–(34) the following identity has been applied:

1

g
¼ 1

y1
� ipdðy1Þ:

Substitution of Eqs. (31)–(34) into Eqs. (19) and (20) leads to

Im½AðgÞqðgÞ� ¼ Im½A�ðgÞq�ðgÞ�; Im½BðgÞqðgÞ� ¼ Im½B�ðgÞq�ðgÞ�;
Re½AðgÞqðgÞ� �Re½A�ðgÞq�ðgÞ� ¼ b; Re½BðgÞqðgÞ� �Re½B�ðgÞq�ðgÞ� ¼ F;

or simply

AðgÞqðgÞ � A�ðgÞq�ðgÞ ¼ b; ð35Þ

BðgÞqðgÞ � B�ðgÞq�ðgÞ ¼ F: ð36Þ

The solutions of qðgÞ and q�ðgÞ of Eqs. (35) and (36) may be expressed as

qðgÞ ¼ �AðgÞ�1
MðgÞ�1

M�
2ðgÞ

�1
b



þ iF

�
; ð37Þ

q�ðgÞ ¼ �A� gð Þ�1
MðgÞ�1

M1ðgÞ�1
b



þ iF

�
; ð38Þ

where M1 ¼ �iBðgÞAðgÞ�1
, M�

2 ¼ �iB�ðgÞA�ðgÞ�1
are the impedance tensors (Lothe and Barnett, 1976) of

material 1 and material 2, respectively, and M is given by

MðgÞ ¼M1 �M�
2: ð39Þ

The functions qðxÞ and q�ðx�Þ are obtained from qðgÞ and q�ðgÞ by

qðxÞ ¼
X3

k¼1

IkqðxkÞ; qðxÞ ¼
X3

k¼1

Ikq
�ðx�

kþ3Þ;

where I1 ¼ diag½1; 0; 0�, I2 ¼ diag½0; 1; 0�, and I3 ¼ diag½0; 0; 1�.
If material 1 and material 2 are identical, the problem reduces to the one for an infinite homogeneous

solid. In this case the following identities exist (Ting, 1996, p. 445):

BðgÞ 1

c

	 

AðgÞT þ B�ðgÞ 1

c�

	 

A�ðgÞT ¼ I; ð40Þ
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AðgÞ 1

c

	 

AðgÞT þ A�ðgÞ 1

c�

	 

A�ðgÞT ¼ 0; ð41Þ

AðgÞTB�ðgÞ þ BðgÞTA�ðgÞ ¼ 0; ð42Þ

0 0.4 0.8 1.2

x 1

c0t 0
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-0.5
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0.5

1

x2

c0t 0

7o

75 o

1 2 3
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5 6 7 8
9

10 11

12

13

14

Fig. 1. Wave fronts and angles of observation for the 10�/)10� GaAs bimaterial.
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Fig. 2. G11 as a function of r for / ¼ 0�.
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where

1

c

	 

¼ diag

1

c1
;
1

c2
;
1

c2

� �
;

1

c�

	 

¼ diag

1

c4
;
1

c5
;
1

c6

� �
; and ck ¼ 2aTk bk; k ¼ 1; 2; . . . ; 6:

Using Eqs. (40) and (41), the matrix M of Eq. (39) becomes

M ¼ �i AðgÞ 1

c

	 

AðgÞT

� ��1

: ð43Þ

Substitution Eq. (43) into Eq. (37) and using Eq. (42) leads to

qðgÞ ¼ 1

c

	 

AðgÞTF



þ BTðgÞb

�
: ð44Þ

Eq. (44) recovers the solution given by Wu (2000). The solution for Lamb�s problem may also be obtained

by setting M�
2ðgÞ ! 0. In doing so, M simplifies to

MðgÞ ¼ �iBðgÞAðgÞ�1

and qðgÞ to

qðgÞ ¼ BðgÞ�1
F: ð45Þ

0.4 0.6 0.8 1                                 1.2

-80

-40

0

40

80
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θ

θ/−θ

θ/
φ = °

Fig. 3. G22 as a function of r for / ¼ 0�.

1818 K.-C. Wu / International Journal of Solids and Structures 40 (2003) 1811–1823



Eq. (45) is the same as that derived by Wu (2000). Finally in the limit as t ! 1, pkð0Þ appear as three pairs
of complex conjugate constants and xk ¼ zk=t, where zk ¼ x1 þ pkð0Þx2. the result derived here reduce to

that for the corresponding static problem (Ting, 1996, pp. 273–283).

The particle velocities _uu and _uu� in materials 1 and 2, respectively, are given by substituting Eqs. (25) and
(26) into Eq. (15) as

_uu ¼ � 1

p
Im AðxÞ ox

ox1

	 

qðxÞ

� �
; ð46Þ

_uu� ¼ � 1

p
Im A�ðx�Þ ox�

ox1

	 

q�ðx�Þ

� �
: ð47Þ

If only the line force is considered, Eqs. (46) and (47) may be expressed as

_uu ¼ GF; _uu� ¼ G�F;

where

G ¼ 1

p
Re AðxÞ ox

ox1

	 
X3

k¼1

IkAðxkÞ�1
MðxkÞ�1

" #
; ð48Þ

G� ¼ 1

p
Re A�ðx�Þ ox�

ox1

	 
X3

k¼1

IkA
�ðx�

kþ3Þ
�1
Mðx�

kþ3Þ
�1

" #
: ð49Þ

Note that _uu and _uu� are also the displacements due to an impulsive interfacial line force and G and G� are the

corresponding Green�s functions.
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Fig. 4. G11 as a function of r for / ¼ 7�.
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4. Interfacial Stoneley waves

From Eq. (46) the velocity _uu at the interface is given by

_uu ¼ 1

pt
Im½MðgÞ�1ðM�

2ðgÞ
�1
bþ iFÞ�: ð50Þ

The matrix MðgÞ�1
may be expressed as

MðgÞ�1 ¼ 1

mðgÞ adjðMðgÞÞ; ð51Þ

where mðgÞ is the determinant ofM gð Þ and adjðMðgÞÞ is the adjoint matrix ofMðgÞ. Chadwick and Currie

(1974) showed that interfacial Stoneley waves exist if there are speeds vs such that

mðvsÞ ¼ 0: ð52Þ
Let v̂v1 and v̂v2 be the smallest bulk wave speeds associated with materials 1 and 2, respectively. Barnett et al.
(1985) showed that if vs is subsonic, i.e., 0 < vs < min½v̂v1; v̂v2�, it is unique. They also showed that vs is not less
than the smaller of the surface wave speeds of the two materials. A subsonic interfacial wave falls off ex-

ponentially with distance on both sides of the interface.

It is assumed that m0ðvsÞ 6¼ 0 so that mðgÞ may be written as

mðgÞ ¼ ðg � vsÞ ~mmðgÞ; ð53Þ
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Fig. 5. G22 as a function of r for / ¼ 7�.
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where ~mmðvsÞ 6¼ 0. It follows from Eq. (53) that

1

mðgÞ ¼
1

y1 � vs

�
� ipdðy1 � vsÞ

�
1

~mmðgÞ : ð54Þ

Substituting Eq. (51) into Eq. (50) and using Eq. (54) yields

_uu ¼ � 1

pðx1 � vstÞ
Im½UðgÞ� þ dðx1 � vstÞRe½UðgÞ�;

where UðgÞ is given by

UðgÞ ¼ � adjðMðgÞÞ
~mmðgÞ ðM�

2ðgÞ
�1
bþ iFÞ:

Thus upon the arrival of the interfacial wave _uu exhibits a pole singularity as well as a d-singularity.

5. Numerical examples

Consider an infinite GaAs crystal, which is of cubic symmetry. The coordinate axes are coincident with

the elastic symmetry axes at first. The crystal is cut into two half-crystals so that the interface between the

two half-spaces is normal to the x2-axis. Let the upper half-space be rotated by h and the lower half-space

by �h about the normal to the interface; the two half-spaces are then rebonded. The subsonic Stoneley

0.4 0.6 0.8 1                                 1.2
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12 12

13

14

7

θ

θ/−θ

θ/
φ = °

Fig. 6. G11 as a function of r for / ¼ 75�.

K.-C. Wu / International Journal of Solids and Structures 40 (2003) 1811–1823 1821



wave speeds for such h=�h bimaterials were computed by Barnett et al. (1985). The elastic constants of

GsAs with respect to the symmetry axes in units of 100 GPa are c11 ¼ 1:19, c12 ¼ 0:538, c44 ¼ 0:595, and the

mass density is q ¼ 5:31� 103 kg/m3 (Bateman et al., 1959).

The Green�s functions G11 and G22 given by Eq. (48) for x2 > 0 were calculated for a fixed time t ¼ t0 for a
10�/)10� bimaterial. The wave surface of the bimaterial for x1 > 0 is shown in Fig. 1, where the bulk wave

fronts are plotted as solid lines and the head wave fronts as dotted lines. The wave surface is symmetric

about the interface. The bulk wave fronts are in fact the same as those of a homogeneous 10�/10� material,

which is obtained by rotating the whole crystal 10� about the x2-axis. The additional head waves of the 10�/
)10� bimaterial develop because each point at the interface swept by the faster moving bulk waves radiates

the more slowly travelling waves. In Fig. 1 only the head wave fronts in the upper half-space are shown. The

Green�s function G11 or G22 is expressed in the following dimensionless form:

pt0CGaa
r

c0t0
cos/;

r
c0t0

sin/

� �
; a ¼ 1; 2;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
, / ¼ tan�1ðx2=x1Þ, C ¼ 100 GPa, and c0 ¼

ffiffiffiffiffiffiffiffiffi
C=q

p
¼ 4340 m/s. The Green�s functions

were calculated as a function of r for / ¼ 0�, 7�, and 75�. The observation angles and the various wave

arrivals indicated by numerals are depicted in Fig. 1. The Green�s function G11 and G22 for a 10�/10�
homogeneous material were also computed for comparison purposes.

The results of G11 and G22 for / ¼ 0 along the interface are displayed in Figs. 2 and 3, respectively. It can

be seen in Fig. 2 that a pseudo-interfacial wave occurs at r=c0t0 ¼ 0:756 between two bulk waves (points 2

and 3). A plot of the absolute value of jmj as a function of r=c0t0 reveals that although jmj does not actually
vanish at this pseudo-interface wave speed, its value is a small local minimum. This characteristic feature is

0.4 0.6 0.8 1 1.2

0

2

4

6

8

10

12

13

14
75

θ

θ/−θ

θ/
φ = °

Fig. 7. G22 as a function of r for / ¼ 75�.
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similar to that of pseudo-surface waves (Lim and Farnell, 1968). For G22 a true subsonic interface wave,

denoted by I in Fig. 3, appears at r=c0t0 ¼ 0:709, which is slightly behind the last bulk wave. The subsonic

interface wave speed agrees well with that computed by Barnett et al. (1985). For G11 and G22 at / ¼ 7� and
75� shown in Fig. 4–7, the features of the 10�/–10� bimaterial are essentially the same as those of the 10�/10�
homogeneous material except for the presence of the pseudo-interface wave and the head waves. In Fig. 4

for G11 at / ¼ 7� there are a pseudo-interface wave and two barely visible head waves (points 9 and 10). In

Fig. 5 for G22 at / ¼ 7� there is a pronounced head wave contribution (point 7). In Figs. 6 and 7 the results

of the 10�/–10� bimaterial are indistinguishable from those of the 10�/10� homogeneous material.

6. Conclusion

In this paper we have used an extended Stroh�s formulation to derive a closed-form solution for a

suddenly applied interfacial line force or dislocation in an anisotropic bimaterial. With the extended Stroh�s
formulation, the solution is obtained without the need of integral transforms. In fact as the extended Stroh�s
formulation retains the basic structure of the static formulation, the dynamic solution is derived in much

the same way as the corresponding static counterpart (Ting, 1996, pp. 278–279).
The solution is used to calculate the response of a bimaterial formed by bonding two misoriented half-

spaces of GaAs crystal. It is shown that in addition to true subsonic Stonley waves, pseudo-interface waves

are also present. The pseudo-interface waves propagate into either half-space as head waves or shock

waves. It is also shown that the response of the bimaterial is essentially the same as that of the homogenous

material for large observation angles measured from the interface.
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