INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 1811-1823

Transient motion of an interfacial line force or dislocation
in an anisotropic elastic bimaterial

Kuang-Chong Wu *

Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
Received 5 August 2002; received in revised form 19 November 2002

Abstract

A full-field dynamic solution of an interfacial line force or dislocation in bonded anisotropic elastic half-spaces is
presented. The form of the solution resembles that of the corresponding static solution. The evaluation of the solution
requires only the calculation of certain eigenvalue problems. Particular attention is given to the singular feature in the
response associated with the interfacial Stoneley wave. Numerical examples are given to illustrate the characteristics of a
pair of bonded misoriented half-spaces of GaAs.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Interfacial dislocation; Interfacial force; Transient problem; Wave propagation; Anisotropic material

1. Introduction

A prominent feature of the dynamics of the interface separating two dissimilar elastic media is the
possible existence of interfacial waves, commonly referred to as Stoneley waves. Such waves propagate
without dispersion along the interface and attenuate exponentially with distance normal to the interface in
both media. The early investigation of interfacial waves was primarily for geophysical applications. More
recently interfacial waves have been applied to non-destructive materials characterization.

Stoneley (1924) was the first to demonstrate that steady interfacial waves do not always exist for bonded
isotropic half-spaces. Scholte (1947) showed that for bonded isotropic half-spaces the interfacial waves only
exist under very severe restrictions on material constants. Barnett and Lothe (1974) and Chadwick and
Currie (1974) deduced a general condition determining the Stoneley wave velocity in bonded anisotropic
half-spaces. Barnett et al. (1985) further established the uniqueness and existence conditions of subsonic
Stoneley waves in bonded anisotropic half-spaces. Every and Briggs (1998) presented algorithms based on
integral transforms for calculating the time domain displacement response of bonded anisotropic half-
spaces to impulsive line and point forces at their interface. The calculation of the line force response at the
interface was reduced to a purely algebraic problem.
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In this paper the transient motion of an anisotropic bimaterial due to a line force and a line dislocation at
the interface is considered. A formulation for two-dimensional self-similar problems in elastodynamics
developed by Wu (2000) is employed. In this formulation the solution is expressed in terms of the eigen-
values and eigenvectors of a six-dimensional matrix, which is a function of the material constants, time and
position. A major advantage of the proposed formulation is that no integral transforms are required. This
fact greatly facilitates derivations of explicit solutions. Indeed, a full-field solution of the problem under
consideration is derived. Particular attention is given to the singular feature in the response associated with
the interfacial Stoneley wave. Numerical examples are presented to illustrate the characteristics of a pair of
bonded misoriented half-spaces of GaAs.

2. Formulation
For two-dimensional deformation in which the Cartesian components of the stress ¢; and the dis-
placement u;, i,j = 1,2, 3, are independent of x3, the equations of motion are
(ti1 +ta2) = pil, (1)

where t; = (011,621,631)T, t, = (012,022,032)T, il is the acceleration, p is the density, a subscript comma
denotes partial differentiation with respect to coordinates and an overhead dot designates derivative with
respect to time ¢. The stress—strain laws are

tl = Qll‘l =+ Rlljz, (2)

t2 = RTUJ + Tll,g7 (3)
where the matrices Q, R, and T are related to the elastic constants Cy, by

O = Cirt, Ry = Cigay, Tk = Ciggo.

The equations of motion expressed in terms of the displacements are obtained by substituting Egs. (2) and
(3) into Eq. (1) as

Qu;; + (R+ RNy, + Tuy = pii. (4)
Let the displacement be assumed as u(x;,x,,#) = u(w) with the variable w(x;,x,,¢) implicitly defined by
ot = x1 + p(w)x,. (5)

Eq. (4) becomes (Wu, 2000)
s S0 90T p(O) R4 RT) 4 p(0) T ()} =0, ©)

where I is the identity matrix and 0w/0x; = 1/(¢ — p'(w)x;). Let w'(w) be expressed as

u'(w) = f(w)a(w), (7)
where f(w) is an arbitrary scalar function of w. It follows that u(w) is a solution of Eq. (4) if
D(p, w)a(w) =0, (8)

where D(p, ) is given by

D(p,®) = Q+ p(R+R") + p’T — po’lL. (9)
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For non-trivial solutions of a(w) we must have
ID(p, )| =0, (10)

where |D| is the determinant of D.

Eq. (10) provides six eigenvalues of p as a function of w, denoted by py(w), k = 1,2,...,6. The function
(@) is single-valued if o is allowed to range over the six sheets =¥ of its Riemann surface, taking the values
() on =X (Willis, 1973). If w is real and || is sufficiently large, there are six real roots p; (). Three of these
roots are characterized by p'(w) > 0 and the other three by p/(w) < 0. The three of the former type will be
assigned to the Riemann surfaces =¥ (k = 1,2, 3) and the three of the latter type to ¥ (k = 4, 5, 6). The sheets
are connected across appropriate lines joining the branch points of p, (), which are located on the real axis
in the complex w-plane and are determined by '(p) = 0. For a real value of o, ® = y; + p(w)y, represents a
plane wave front which is tangent to a wavefront surface at (o — p(w)/p' (®), 1/ p'(w)) (Wu, 2000). Thus real
pr (k=1,2,3) are associated with the rays propagating in the direction of positive x, while p, (k = 4,5,6)
with the rays propagating in the negative direction of x,. It can be shown that complex p;(w) has positive
imaginary part in the upper half of ¥ (k = 1,2,3) and negative imaginary part in the upper plane of ¢
(k =4,5,6). The variable o, = w;(x],x,,¢) can then be solved from Eq. (5) by taking p(w) = pr(w).

From Eq. (5) the complex variables w; may be written as

wr = y1 + pe(@r)ya, (11)
where y, = x,/t, « = 1,2. Substitution of Eq. (11) into Eq. (9) leads to

D= Q+p(R+R")+pT, (12)
where

@ik = Ciu, Ri=Cu, Ty = Con,
and 6‘,»ij = Cijs — pY;¥s0x. Thus p; as a function of y; and y, can be obtained from Eq. (10) with D given by
Eq. (12). Once py(y1,),) are obtained, w;(y1,)») are simply given by Eq. (11). Note that as ¢ — oo, the
eigenvalues p, reduce to Stroh’s eigenvalues for anisotropic elastostatics (Stroh, 1958).
From Eq. (7), the general solution of Eq. (4) may be represented as

0w
u(x,xa, 1), :2Re{ a—kfk(wk)ak(wk)}, (13)
: '
a(l)k
u(x;,x,1), = 2Re zk:a—xsz(wk)ak(cok) , (14)
4(xy, 12, ) = 2Re Z%f(w Yay () (15)
1542 - - at k k) Ak k )
where k =1,2,3 or 4,5,6, and
fop _ 1
oy t—ppoy)’
Qy ( )%
axz DPic\ Wy ox )
o, 9%
ar . %o

The choice of the range of £ depends on whether up-going rays or down-going rays are considered.
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By substituting Egs. (13) and (14) into Egs. (2) and (3), the general solutions of the stress vectors t; and t,
can be expressed as

tl(xl,XQ,t) = 2Re{ ka(wk) <pa)k6§;kak(wk) + Z?;kbk(wk)) }, (16)

ty(x1,X2,1) = ZRe{ > %—xkfk(wk)bk(wk)} (17)
where

bi(®) = (R + pr(0)T)a (o). (18)

A useful expression for pj (wy) is given by (Wu, 2000)

3. Full-field solution

Consider a bimaterial consisting of two dissimilar elastic half-spaces bonded together. Let the half-space
x> = 0 be occupied by material 1 and the half-space x, <0 be occupied by material 2. The bimaterial is
initially stress-free and is subjected to a line force H(#)F and a dislocation of Burgers vector H(¢)b at the
origin for ¢t > 0. Here H is the Heaviside step function. The associated jump conditions at the interface
x, = 0 are given by

u‘l(x1,0+,t) —uf‘l(xl,O’,t) = —5()(1)[‘1(1‘)[), (19)
261,07, 1) — 501,07, 1) = —8(x) )H(1)F, (20)
where the superscript “x” denotes quantities referred to material 2.

Since up-going waves are generated in material 1 and down-going waves are in material 2, the expressions
for u; and t, in materials 1 are given by

u; =2Re {A(w)<2f:>f(w)}, (21)
t; =2Re [B(w) < 2_3(;: >f(w)} ) (22)
where

( )=1a ( 1), 2(@2), a3 (w3)],
(@) = [bi(@1), ba2(2), bs(w3)],
(0]

<a>

6x1 ’ 6x1 ’ 6x1
(@) = [fi(o1), falw2), f3(3)]",
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and ‘“diag” denotes diagonal matrix. Those for material 2 are

w, = 2Re [A*(w*)<%(;): >f*(w*)} , (23)

= 2Re B (o) 5 )1 (o) (24
where

Al (") = [ay(}), a5(w3), ag(wy)],

B’ (") = [by(}), b5(ws), b

' (0") = [f; (@), /5 (03), fo ()]
do™ \ . 0w, Ow: Owg
< 6x1 > _dlag{axl ’axl 76)61 :|

The forms of f(w) and f*(w*) are assumed as follows:

f(0) = 512 4 JaCo), 25)

(") 2lni<(j*>q*(w*), (26)
where

(5) =ding] o] a0 = o). g i)

(o) =dine| oz | 0(0) = i gt

PRI
w; w5 g

gr and g; are analytic at w; = 0 and w;,, = 0, k = 1,2, 3, respectively. With Eq. (25) substituted, Egs. (21)
and (22) become

1 10
wi = A)( 3 &2 Jato)]. @7
1 10
t, = EIm [B(w)< p a—z >q(w)} . (28)
With Eq. (26) substituted, Egs. (23) and (24) become
1 1 dw*
uy = iAo - 55 )] 29)

= Lm0 25 (o) (30)

w* 0x;
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Asx, — 0, wp =n =3 +10", k = 1,2,3, Egs. (27) and (28) yield
1 o0n)

wy = Im{A)g(n)] = =~ Re[A()a(n)]; (31)
0
& = i) "2 ReBma ()] (32)
Similarly as x; — 07, w} =5 =y +10", k =4,5,6, Egs. (29) and (30) give
1 o .
wy = tmlA" g ()] - 2L RelA () (), (33)
1 0
=~ (B (n)q" ()] — "2 RelB (1) ()] (34)
In Eqgs. (31)—(34) the following identity has been applied:
= o ).

Substitution of Egs. (31)—(34) into Egs. (19) and (20) leads to

Im[A(7)q(n)] = Im[A"(n)q" ()],  Im[B(n)q(n)] = Im[B"(n)q"(n)],
Re[A(n)q(n)] — Re[A"(n)q"(n)] = b,  Re[B(n)q(n)] — Re[B*(n)q"(n)] = F,

or simply
A(na(n) — A" (n)q"(n) = b, (35)
B(n)q(n) — B (n)q"(n) =F. (36)
The solutions of q(n) and q* (1) of Egs. (35) and (36) may be expressed as
a(n) = =AM~ (M3(1)"'b + iF), (37)
q'(n) = =A"(n) "M~ (M (n) b +iF), (38)

where M; = —iB(i)A() "', M = —iB"()A" ()" are the impedance tensors (Lothe and Barnett, 1976) of
material 1 and material 2, respectively, and M is given by

M(n) = M, — M. (39)
The functions q(w) and q*(w*) are obtained from q(y) and q*(y) by

q(w) = Z Lg(w), q(w) = Zlkq*(w2+3),

where I, = diag[1,0, 0], I, = diag[0, 1, 0], and Iy = diag|0, 0, 1].
If material 1 and material 2 are identical, the problem reduces to the one for an infinite homogeneous
solid. In this case the following identities exist (Ting, 1996, p. 445):

B(n)<l>A(H)T +B*(n)<%>A*(n)T =1, (40)

v
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A (S )AOT+ A (5 YA =0

A(n)" B () + B(n)"A"(n) =0,

Fig. 1. Wave fronts and angles of observation for the 10°/-10° GaAs bimaterial.
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Fig. 2. Gy, as a function of r for ¢ = 0°.
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where

1 1 1 1 1 1 1 1
<—>:diag[—,—7—], <—>:diag[—,—,—}, and y,=2a.b,, k=1,2,...,6.
Y Y1 V2 V2 V" Y4 Vs Ve

Using Egs. (40) and (41), the matrix M of Eq. (39) becomes
: 1 N\
M = —i( A(n) 5 A )
Substitution Eq. (43) into Eq. (37) and using Eq. (42) leads to

q(n) = < ! > (A(n)TF + BT(n)b) :

Y

(44)

Eq. (44) recovers the solution given by Wu (2000). The solution for Lamb’s problem may also be obtained

by setting M5 (n) — 0. In doing so, M simplifies to

M(n) = —iB(n)A(n)""

and q(n) to

q(n) =B(n)'F.

120 —
|
80 —| 0=0
77777 0/0
- 6/-6
3
20 —| 1

40 —|

80 \ \ \ \
0.4 0.6 0.8 1 1.2
r/c,t,

Fig. 3. Gy, as a function of r for ¢ = 0°.

(45)
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Eq. (45) is the same as that derived by Wu (2000). Finally in the limit as # — oo, p;(0) appear as three pairs
of complex conjugate constants and w; = z;/t, where z; = x; + p;(0)x,. the result derived here reduce to
that for the corresponding static problem (Ting, 1996, pp. 273-283).

The particle velocities u and u* in materials 1 and 2, respectively, are given by substituting Egs. (25) and
(26) into Eq. (15) as

=~ m|A)( 2 Jato)]. (46)
i —%Im {A*(w*)< aac)?l* >q*(w*)} (47)

If only the line force is considered, Eqgs. (46) and (47) may be expressed as
u=GF, o =G'F,

where
G = ERG A(w)< 2—::> i:lkA(a)k)lM(a)k)I] , (48)
* 3
G = %Re A*(w*)< %C; > ZI,(A*(@;;H)‘M(QJ;H)I] . (49)

Note that i and a* are also the displacements due to an impulsive interfacial line force and G and G™ are the
corresponding Green’s functions.

20 —

10 —

Pl

nt,CGy,
|

10 ‘ I ‘ I ‘ I ‘ \
04 0.6 0.8 1 1.2
r/c,t,

Fig. 4. Gy, as a function of r for ¢ = 7°.
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4. Interfacial Stoneley waves

From Eq. (46) the velocity u at the interface is given by

i = L TmM(n)” (M) b + iF)]. (50)

Tt

The matrix M(5)"' may be expressed as
M(yn R
W

where m(n) is the determinant of M(n) and adj(M(#)) is the adjoint matrix of M(5). Chadwick and Currie
(1974) showed that interfacial Stoneley waves exist if there are speeds v, such that

m(vs) = 0. (52)

Let 9; and 9, be the smallest bulk wave speeds associated with materials 1 and 2, respectively. Barnett et al.
(1985) showed that if v, is subsonic, i.e., 0 < vy, < min[dy, 3,], it is unique. They also showed that v, is not less
than the smaller of the surface wave speeds of the two materials. A subsonic interfacial wave falls off ex-
ponentially with distance on both sides of the interface.

It is assumed that m/(v;) # 0 so that m(n) may be written as

adj(M(n)), (51)

m(n) = (n — vs)m(n), (53)

60 —

) 8
40%
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|

0] I 0/-0

7

/e 4

nt,CG,,
1

60 * I * I * I * \
04 0.6 0.8 1 1.2
r/cyt,

Fig. 5. Gy, as a function of r for ¢ = 7°.
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where m(v;) # 0. It follows from Eq. (53) that

1 1 1
— = —ino(y —vs) | ——. 54
m(n) [y — s - ) m(n) 59
Substituting Eq. (51) into Eq. (50) and using Eq. (54) yields
. 1
u=- mlm[U(ﬂ)] +6(x1 — vt)Re[U(n)],
where U(#) is given by
adj(M(n)) nrer c1p
Up)=——=M b +iF).

Thus upon the arrival of the interfacial wave u exhibits a pole singularity as well as a d-singularity.

5. Numerical examples

Consider an infinite GaAs crystal, which is of cubic symmetry. The coordinate axes are coincident with
the elastic symmetry axes at first. The crystal is cut into two half-crystals so that the interface between the
two half-spaces is normal to the x,-axis. Let the upper half-space be rotated by 0 and the lower half-space
by —0 about the normal to the interface; the two half-spaces are then rebonded. The subsonic Stoneley

12— 12
| 0=7
————— 0/0
0/-0
8 —|
S 4
<
[
N 13
14
0 —
4 \ \ \ \
0.4 0.6 0.8 1 1.2

r/c,t,

Fig. 6. G|, as a function of r for ¢ = 75°.
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wave speeds for such 0/—0 bimaterials were computed by Barnett et al. (1985). The elastic constants of
GsAs with respect to the symmetry axes in units of 100 GPa are ¢;; = 1.19, ¢j; = 0.538, c44 = 0.595, and the
mass density is p = 5.31 x 10° kg/m* (Bateman et al., 1959).

The Green’s functions Gy; and G, given by Eq. (48) for x, > 0 were calculated for a fixed time ¢ = ¢, for a
10°/-10° bimaterial. The wave surface of the bimaterial for x; > 0 is shown in Fig. 1, where the bulk wave
fronts are plotted as solid lines and the head wave fronts as dotted lines. The wave surface is symmetric
about the interface. The bulk wave fronts are in fact the same as those of a homogeneous 10°/10° material,
which is obtained by rotating the whole crystal 10° about the x,-axis. The additional head waves of the 10°/
—10° bimaterial develop because each point at the interface swept by the faster moving bulk waves radiates
the more slowly travelling waves. In Fig. 1 only the head wave fronts in the upper half-space are shown. The
Green’s function Gy, or Gy, is expressed in the following dimensionless form:

ntgCGy, <L cos (b,L sin qS), a=1,2,
Colo Colo

where r = \/x? +x3, ¢ = tan"!(x2/x;), C = 100 GPa, and ¢, = \/C/p = 4340 m/s. The Green’s functions

were calculated as a function of r for ¢ = 0°, 7°, and 75°. The observation angles and the various wave

arrivals indicated by numerals are depicted in Fig. 1. The Green’s function G;; and Gy, for a 10°/10°

homogeneous material were also computed for comparison purposes.

The results of G;; and Gy, for ¢ = 0 along the interface are displayed in Figs. 2 and 3, respectively. It can
be seen in Fig. 2 that a pseudo-interfacial wave occurs at r/cotp = 0.756 between two bulk waves (points 2
and 3). A plot of the absolute value of |m| as a function of r/cyf, reveals that although |m| does not actually
vanish at this pseudo-interface wave speed, its value is a small local minimum. This characteristic feature is

10—

12
5—| . 14

nt,CG,,
|

0 \ \ \ \
04 0.6 0.8 1 1.2
r/cot,

Fig. 7. Gy, as a function of r for ¢ = 75°.
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similar to that of pseudo-surface waves (Lim and Farnell, 1968). For G,, a true subsonic interface wave,
denoted by I in Fig. 3, appears at r/coty = 0.709, which is slightly behind the last bulk wave. The subsonic
interface wave speed agrees well with that computed by Barnett et al. (1985). For Gy, and G, at ¢ = 7° and
75° shown in Fig. 4-7, the features of the 10°/~10° bimaterial are essentially the same as those of the 10°/10°
homogeneous material except for the presence of the pseudo-interface wave and the head waves. In Fig. 4
for Gy, at ¢ = 7° there are a pseudo-interface wave and two barely visible head waves (points 9 and 10). In
Fig. 5 for Gy, at ¢ = 7° there is a pronounced head wave contribution (point 7). In Figs. 6 and 7 the results
of the 10°/~10° bimaterial are indistinguishable from those of the 10°/10° homogeneous material.

6. Conclusion

In this paper we have used an extended Stroh’s formulation to derive a closed-form solution for a
suddenly applied interfacial line force or dislocation in an anisotropic bimaterial. With the extended Stroh’s
formulation, the solution is obtained without the need of integral transforms. In fact as the extended Stroh’s
formulation retains the basic structure of the static formulation, the dynamic solution is derived in much
the same way as the corresponding static counterpart (Ting, 1996, pp. 278-279).

The solution is used to calculate the response of a bimaterial formed by bonding two misoriented half-
spaces of GaAs crystal. It is shown that in addition to true subsonic Stonley waves, pseudo-interface waves
are also present. The pseudo-interface waves propagate into either half-space as head waves or shock
waves. It is also shown that the response of the bimaterial is essentially the same as that of the homogenous
material for large observation angles measured from the interface.
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